Sensitivity of Lane Position and Steering Angle Measurements to Driver Fatigue

Author:

Zhang Hui1,Wu Chaozhong1,Huang Zhen2,Yan Xinping1,Qiu Tony Z.13

Affiliation:

1. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Mailbox 125, 1040 Heping Road, Wuhan, Hubei 430063, China

2. School of Automation, Wuhan University of Technology, Mailbox 125, 1040 Heping Road, Wuhan, Hubei 430063, China Mailbox 125, 1040 Heping Road, Wuhan, Hubei 430063, China

3. Department of Civil and Environmental Engineering, University of Alberta, 3-005 NREF, Edmonton, Alberta T6G 1H9, Canada

Abstract

The parameter value chosen to measure driving performance affects the accuracy of the estimated fatigue level. Methods to analyze the sensitivity of these parameter values were proposed. Standard deviation of lane position (SDLP) and steering reversal rate (SRR) were considered to assess fatigue, and the sensitivity of these parameters was analyzed from the time domain and value domain. Thirty-six male drivers participated in a field test. Lane position, steering wheel angle data, and self-reported fatigue level (scored on the Karolinska sleepiness scale) were recorded. SDLP results indicate that the maximum average coefficient with fatigue level reached .11, with a unified statistical interval of 202 s when the consecutive analysis method was used; the maximum average coefficient was .12 with a unified interval of 120 s when the maximum analysis method was used. SRR results indicate that a steering angle difference of 6° was the most sensitive threshold for driver fatigue level and has an average correlation coefficient of .42, which demonstrated that SRR was more reliable than SDLP for monitoring fatigue level. With the use of the optimal parameter value, the variation results of SDLP and SRR at each fatigue level were examined, and results indicate that driving ability was impaired as fatigue level increased. The methods and results can be applied to analyses of fatigued or drowsy driving.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3