Comprehensive Life-Cycle Cost Analysis for Selection of Stabilization Alternatives for Better Performance of Low-Volume Roads

Author:

Praticò Filippo1,Saride Sireesh2,Puppala Anand J.3

Affiliation:

1. Department of Civil Engineering, University Mediterranea at Reggio Calabria, Italy.

2. Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India.

3. Department of Civil and Environmental Engineering, University of Texas at Arlington, Box 19308, Arlington, TX 76019.

Abstract

Low-volume roads (LVRs), such as rural, farm-to-market, and less-used local and city roads, are an important part of the world's transportation infrastructure. LVRs have been credited as a direct cause of the socioeconomic development of rural communities. It has been estimated that 60% of the road network in the United States is made up of low-volume roads. The construction, maintenance, and rehabilitation of these roads are major tasks that result in about 54% of the total annual expenditure of transportation agencies in the United States. Better design and construction methods will lead to lower maintenance and rehabilitation costs of LVRs. Stabilization of weak subgrade soils to support LVRs is a widely accepted method of improving their performance. However, the selection of a stabilization alternative on the basis of cost–benefit analysis is a crucial task for a transportation agency and one that has not been addressed in a systematic manner. In this paper, a new conceptual engineering economics tool–based life-cycle cost analysis (LCCA) is developed to optimize and to select the best stabilizer and the stabilization technique for a given subgrade soil and given traffic conditions. In this analysis, agency, user, and externality costs are addressed. Two case studies are analyzed for European and U.S. road conditions to validate the LCCA model. Results demonstrate that, under specific boundary conditions, soil stabilization can play an important role, merging the environmental and mechanical effectiveness of low-volume roads.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference36 articles.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3