Automated Accident Detection in Intersections via Digital Audio Signal Processing

Author:

Bruce Lori Mann1,Balraj Navaneethakrishnan1,Zhang Yunlong2,Yu Qingyong2

Affiliation:

1. Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762

2. Department of Civil Engineering, Mississippi State University, Starkville, MS 39762

Abstract

A system for automated traffic accident detection in intersections was designed. The input to the system is a 3-s segment of audio signal. The system can be operated in two modes: the two-class and multiclass modes. The output of the two-class mode is a label of “crash” or “noncrash.” In the multiclass mode of operation, the system identifies crashes as well as several types of noncrash incidents, including normal traffic and construction sounds. The system is composed of three main signal processing stages: feature extraction, feature reduction, and classification. Five methods of feature extraction were investigated and compared; these are based on the discrete wavelet transform, fast Fourier transform, discrete cosine transform, real cepstral transform, and mel frequency cepstral transform. Statistical methods are used for feature optimization and classification. Three types of classifiers are investigated and compared; these are the nearest-mean, maximum-likelihood, and nearest-neighbor methods. The results of the study show that the optimum design uses wavelet-based features in combination with the maximum-likelihood classifier. The system is computationally inexpensive relative to the other methods investigated, and the system consistently results in accident detection accuracies of 95% to 100% when the audio signal has a signal-to-noise-ratio of at least 0 decibels.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference23 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Near Real-Time Freeway Accident Detection;IEEE Transactions on Intelligent Transportation Systems;2022-02

2. Evolution and Future of Urban Road Incident Detection Algorithms;Journal of Transportation Engineering, Part A: Systems;2020-06

3. Investigating the effects of daily travel time patterns on short-term prediction;KSCE Journal of Civil Engineering;2011-09

4. A three-stage procedure for validating microscopic simulation models;Efficient Transportation and Pavement Systems;2008-10-28

5. Application of Genetic Neural Networks to Real-Time Intersection Accident Detection Using Acoustic Signals;Transportation Research Record: Journal of the Transportation Research Board;2006-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3