Comparison of Fatigue Damage, Healing, and Endurance Limit with Beam and Uniaxial Fatigue Tests

Author:

Zeiada Waleed Abdelaziz12,Souliman Mena I.3,Kaloush Kamil E.1,Mamlouk Michael1,Underwood B. Shane1

Affiliation:

1. B. S. Underwood, Civil, Environmental, and Sustainable Engineering Program, Arizona State University, P.O. Box 875306, Tempe, AZ 85287–5306.

2. Public Works Department, Mansoura University, Mansoura City, 35516 Egypt.

3. Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 North Virginia Street, SEM320, Reno, NV 89557.

Abstract

The concept of an endurance limit assumes a strain value below which the net fatigue damage that occurs during a load cycle is zero. The fact that real traffic loads are separated by rest periods may allow for partial or full healing of the microcracks, which can affect this endurance limit. If the asphalt layer thickness is controlled to keep strains below the endurance limit, the fatigue life of the pavement can be extended considerably. In the study reported in this paper, it was hypothesized that the endurance limit in asphalt concrete developed from the interaction and balance of damage and healing during a load cycle. This hypothesis formed the basis of the testing and analysis program, which evaluated the effects of air voids, asphalt content, rest periods, and temperature on the endurance limit. Two types of fatigue tests were conducted: beam (flexural) and uniaxial. A regression model also was developed on the basis of the results of each test and used to obtain the endurance limit values. This paper compares fatigue damage, healing, and endurance limit results from the two tests under similar conditions. The comparison shows that the beam fatigue test yields less overall fatigue damage and less healing than the uniaxial fatigue test. Beam fatigue yields 8 to 14 times longer fatigue lives, while uniaxial fatigue yields higher healing (10.4 times for the only available case). Because damage and healing combined to govern the endurance limit, the two tests produced close values in which the overall uniaxial endurance limit values were 12% less than the beam fatigue endurance limit values.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3