Harvesting Thermoelectric Energy from Asphalt Pavements

Author:

Datta Utpal1,Dessouky Samer2,Papagiannakis A. T.3

Affiliation:

1. BSE 1.404, Department of Civil and Environmental Engineering, College of Engineering, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249

2. BSE 1.322, Department of Civil and Environmental Engineering, College of Engineering, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249

3. AET 2.312, Department of Civil and Environmental Engineering, College of Engineering, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249

Abstract

The goal of this study was to develop a prototype for harvesting thermoelectric energy from asphalt pavement roadways. This emerging research field encompasses technologies that capture the existing thermal energy in pavements to generate electricity without depleting natural resources. In lower latitudes, such as south Texas, the asphalt pavement surface temperature in the summer can reach 55°C because of solar radiation. Soil temperatures below the pavement, however, are roughly constant (i.e., 27°C to 33°C) at relatively shallow depths (150 mm). This thermal gradient between the surface temperature and the pavement substrata can be used to generate electrical power through thermoelectric generators (TEGs). The proposed prototype collects heat energy from the pavement surface and transfers the energy to a TEG embedded in the subgrade at the edge of the pavement shoulder. Evaluation of this prototype was carried out through finite element analysis, laboratory testing, and field experiments. The results suggest that the 64- × 64-mm TEG prototype can generate an average of 10 mW of electric power continuously over a period of 8 h in the weather conditions in south Texas. Scaling up this prototype by using multiple TEG units could generate sufficient electricity to sustainably power low-watt LED lights and roadway and traffic sensors in off-grid, remote areas.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference1 articles.

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3