Travel-Time Estimates Obtained from Intelligent Transportation Systems and Instrumented Test Vehicles: Statistical Comparison

Author:

Eisele William L.1,Rilett Laurence R.2

Affiliation:

1. Texas Transportation Institute, 404F CE/TTI Building, 3135 TAMU, College Station, TX 77843-3135

2. Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136

Abstract

Accurate estimation of travel time is necessary for monitoring the performance of the transportation system. Often, travel times are estimated indirectly by using instantaneous speeds from inductance loop detectors and making a number of assumptions. Although these travel times may be acceptable estimates for uncongested conditions, they may have significant error during congested periods. Travel times also may be obtained directly from intelligent transportation systems (ITS) data sources such as automatic vehicle identification (AVI). In addition, mobile cellular telephones have been touted as a means for obtaining this information automatically. Data sources that collect travel-time estimates directly provide travel-time data for both real-time and off-line transportation system monitoring. Instrumented test vehicle runs are often performed to obtain travel-time estimates for system monitoring and other transportation applications. Distance measuring instruments (DMIs) are a common method of instrumentation for test vehicles. DMI travel-time estimates are compared with AVI travel-time estimates by using a variety of statistical approaches. The results indicate that the travel-time estimates from test vehicles instrumented with DMI are within 1% of travel-time estimates from AVI along the study corridor. These results reflect that DMI is an accurate instrumented test vehicle technology and, more important, AVI data sources can replace traditional system monitoring data collection methods when there is adequate tag penetration and infrastructure. A method for identifying instrumented test vehicle drivers who may require additional data collection training is provided. The described procedures are applicable to any instrumented vehicle technique (e.g., the Global Positioning System) in comparison to any ITS data source that directly estimates travel time (e.g., mobile cellular telephones).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference10 articles.

1. EiseleW. L. Estimating Travel Time and Variance Using Intelligent Transportation Systems Data for Real-Time and Off-Line Transportation Applications. Ph.D. Dissertation, Texas A&M University, College Station, 2001.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3