Stochastic Extension of Newell's Three-Detector Method

Author:

Laval Jorge A.1,He Zhengbing2,Castrillon Felipe1

Affiliation:

1. School of Civil and Environmental Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332.

2. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China.

Abstract

A stochastic extension of Newell's three-detector method is presented. The method predicts the traffic states at an intermediate location given boundary data from downstream and upstream detectors. The method presented takes into account day-to-day variations in the arrivals, sensor detection errors, and variability in the fundamental diagram parameters. The output is the probabilistic distribution of predicted cumulative counts, which can be used to obtain confidence bounds on any traffic variable. The method is tested with empirical data.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference23 articles.

1. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach

2. MihaylovaL., BoelR., and HegyiA. An Unscented Kalman Filter for Freeway Traffic Estimation. Proc., 11th IFAC Symposium on Control in Transportation Systems, August 2006, Delft, Netherlands, Vol. 11, Part 1, 2006.

3. A compositional stochastic model for real time freeway traffic simulation

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Refining Time-Space Traffic Diagrams: A Simple Multiple Linear Regression Model;IEEE Transactions on Intelligent Transportation Systems;2024-02

2. Approximate Inference of Traffic Flow State at Signalized Intersections Using a Bayesian Learning Framework;IEEE Transactions on Intelligent Transportation Systems;2023-05

3. A stage pressure-based adaptive traffic signal control using reinforcement learning;International Conference on Intelligent Traffic Systems and Smart City (ITSSC 2021);2022-03-14

4. Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation;Transportation Research Part B: Methodological;2021-04

5. Bibliography;Introduction to Network Traffic Flow Theory;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3