Framework for Evaluating the Reliability of Wide-Area Probe Data

Author:

Adu-Gyamfi Yaw Okyere12,Sharma Anuj3,Knickerbocker Skylar4,Hawkins Neal4,Jackson Michael5

Affiliation:

1. Department of Civil and Environmental Engineering, School of Engineering and Applied Science, University of Virginia, 351 McCormick Road, Charlottesville, VA 22903

2. Department of Civil and Environmental Engineering, College of Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211

3. Department of Civil, Construction, and Environmental Engineering, College of Engineering, Iowa State University, 52 Town Engineering Building, Ames, IA 50010-8664

4. Center for Transportation Research and Education, 2711 South Loop Drive, Suite 4700, Ames, IA 50010-8664

5. Iowa Department of Transportation, 800 Lincoln Way, Ames, IA 50010

Abstract

This paper presents a framework for evaluating the reliability of probe-sourced traffic speed data for detection of congestion and assessment of roadway performance. The methodology outlined uses pattern recognition to quantify accurately the similarities and dissimilarities of probe-sourced and benchmarked local sensor data. First, a pattern recognition algorithm called empirical mode decomposition was used to define short-, medium-, and long-term trends for the probe-sourced and infrastructure-mounted local sensor data sets. The reliability of the probe data was then estimated on the basis of the similarity or synchrony between corresponding trends. The synchrony between long-term trends was used as a measure of accuracy for general performance assessment, whereas short- and medium-term trends were used for testing the accuracy of congestion detection with probe-sourced data. By using 1 month of high-resolution speed data, the authors were able to use probe data to detect, on average, 74% and 63% of the short-term events (events lasting for at most 30 min) and 95% and 68% of the medium-term events (events lasting between 1 and 3 h) on freeways and nonfreeways, respectively. Significant latencies do, however, exist between the data sets. On nonfreeways, the benchmarked data detected events, on average, 12 min earlier than the probe data. On freeways, the latency between the data sets was reduced to 8 min. The resulting framework can serve as a guide for state departments of transportation when they outsource collection of traffic data to probe-based services or supplement their data with data from such services.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference8 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3