Effect of Axle Load Spectrum Characteristics on Flexible Pavement Performance

Author:

Haider Syed Waqar1,Harichandran Ronald S.1

Affiliation:

1. Department of Civil and Environmental Engineering, Michigan State University, 3546 Engineering Building, East Lansing, MI 48824.

Abstract

The Mechanistic–Empirical Pavement Design Guide (MEPDG) uses performance models to predict cracking and rutting in flexible pavements. A unique mechanism controls the initiation and accumulation of each distress, but each mechanism can have several causes. Axle repetitions and loads are the main causes of all load-related distress types. MEPDG incorporates axle load spectra to characterize axle loading for a site and uses them to calculate pavement response and damage accumulation. These load distributions have a bimodal shape, and a mixture of two continuous distributions can be used to model them. In this paper, closed-form solutions are developed to estimate the characteristics of a mixture of bimodal axle load distributions. The observed axle load spectra from 14 sites in different states were used to relate load distribution characteristics to predicted flexible pavement performance. The overall mean and other characteristics of a bimodal axle load distribution explained the variations in expected flexible pavement performance. Cracking, surface rutting, and ride quality are related to the fourth root of the fourth moment of axle load distributions. Rutting in the hot-mix asphalt layer is strongly associated with the overall mean, but in base and subbase layers it is related to the 95th percentile load of axle load spectra. These findings imply that cracking, rutting, and roughness growth in flexible pavements are caused mainly by axle load distributions having heavier tails with infrequent extreme loads. Heavier loads appear to cause more cracking; a higher number of load repetitions is more critical in developing additional surface rutting in flexible pavements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3