Phase Capacity Characteristics for Signalized Interchange and Intersection Approaches

Author:

Bonneson James A.1,Messer Carroll J.1

Affiliation:

1. Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136

Abstract

Described in this paper are the development, calibration, and application of models that collectively can be used to predict the saturation flow rate and start-up lost time of through movements at signalized interchange ramp terminals and other closely spaced intersections. These models were calibrated with data collected at 12 interchanges. It is concluded that saturation flow rate decreases as the distance to the downstream queue decreases. This queue is formed by the signal at a downstream intersection. Saturation flow rate increases with traffic pressure, as quantified by traffic volume per cycle per lane. It is recommended that an ideal saturation flow rate of 2,000 passenger-car units per hour of green per lane be used for signalized ramp terminals and other high-volume intersections in urban areas. The data collected for this research indicate that start-up lost time increases with saturation flow rate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference5 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of approach width on performance of signalized intersections;Materials Today: Proceedings;2021-01

2. Estimation of saturation flow under heterogeneous traffic conditions;Proceedings of the Institution of Civil Engineers - Transport;2019-02

3. Diverging Diamond Interchange Analysis: Planning Tool;Journal of Transportation Engineering;2013-12

4. Influence of Area Population, Number of Lanes, and Speed Limit on Saturation Flow Rate;Transportation Research Record: Journal of the Transportation Research Board;2006-01

5. Saturation Flow Rates and Maximum Critical Lane Volumes for Planning Applications in Maryland;Journal of Transportation Engineering;2005-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3