Transverse Joint Analysis for Mechanistic-Empirical Design of Rigid Pavements

Author:

Hiller Jacob E.1,Roesler Jeffery R.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, B134 and 1211, Newmark Civil Engineering Laboratory, MC-250, 205 North Mathews Avenue, Urbana, IL 61801

Abstract

With the further adoption of mechanistic-empirical design methods in the pavement industry, the calculation of critical responses and cumulative damage for a variety of parameters will be imperative. Traditionally, the critical tensile stress developed by loads at the midslab edge has been used as a mechanistic parameter to determine the required thickness in jointed concrete pavements. However, the inclusion of both temperature and shrinkage gradients in concrete pavement analysis can drastically alter the critical stress location and subsequent distress type that predicts pavement performance. Longitudinal and corner cracking have been found in California to be distresses as significant as transverse cracking. Most of the longitudinal and corner cracking can be explained by excessive differential drying shrinkage. Using finite-element analysis, this study compared the critical tensile stress near the transverse joint with the critical tensile stress at the midslab edge (relative reference stress) for California-type jointed plain concrete pavements. The analysis of the data showed that transverse joint loads were more significant in critical stress calculations for a considerable number of input parameters. These loads at the transverse joint can manifest themselves as top-down or bottom-up longitudinal, transverse, or corner fatigue cracks unlike the bottom-up transverse cracks traditionally predicted by midslab edge loads. The likelihood of critical slab stresses near the transverse joint was considerably increased with the use of negative temperature gradients and extended lane widths.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference26 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The analysis and design of jointed plain concrete pavements with wider slabs;Road Materials and Pavement Design;2024-03-17

2. Prediction of Premature Cracking in Jointed Plain Concrete Pavements;Journal of Transportation Engineering, Part B: Pavements;2021-06

3. Prediction of differential drying shrinkage of airport concrete pavement slabs;International Journal of Pavement Engineering;2019-12-31

4. Numerical analysis of longitudinal cracking in widened jointed plain concrete pavement systems;International Journal of Pavement Research and Technology;2019-05

5. The impact of wet curing on curling in concrete caused by drying shrinkage;Materials and Structures;2015-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3