Using Artificial Neural Networks as a Forward Approach to Backcalculation

Author:

Meier Roger W.1,Alexander Don R.2,Freeman Reed B.2

Affiliation:

1. Department of Civil Engineering, University of Memphis, Memphis, Tenn. 38152

2. U.S. Army Engineer Waterways Experiment Station, 3909 Halls Ferry Road, Vicksburg, Miss. 39180-6199

Abstract

In recent years, artificial neural networks have successfully been trained to backcalculate pavement layer moduli from the results of falling weight deflectometer (FWD) tests. These neural networks provide the same solutions as existing programs, only thousands of times faster. Unfortunately, their use is constrained to the test conditions assumed during network training. These limitations arise from practical aspects of neural network training and cannot be circumvented easily. The goal of this research was to develop a backcalculation program combining the speed of neural networks and the flexibility of conventional programs to produce the same solutions as existing programs. This was accomplished by forgoing neural network backcalculation in favor of neural network forward-calculation, that is, using neural networks in place of complex numerical models for computing the forward-problem solutions used by the conventional backcalculation programs. A suite of neural networks, covering a range of flexible pavement structures, was trained using data generated by WESLEA, the forward-problem solver used in the WESDEF backcalculation program. When tested on 110 experimental FWD results, a version of WESDEF augmented by the neural networks provided statistically identical answers 42 times faster, on average, than the original. Provisions have been made for periodic upgrades as additional networks are trained for other pavement types and test conditions. Meanwhile, the original WESLEA can still be used when an appropriate network is unavailable. This preserves the flexibility of the original program while taking maximum advantage of the speed gains afforded by the neural networks.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3