Detecting Imminent Lane Change Maneuvers in Connected Vehicle Environments

Author:

Bakhit Peter R.1,Osman Osama A.1,Ishak Sherif1

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, Louisiana State University, 3325 Patrick F. Taylor Hall, Baton Rouge, LA 70803

Abstract

Lane changing is a complex decision-making process that is affected by factors such as vehicle features, driver characteristics, network attributes, and traffic conditions. Understanding the changes in driver behavior and vehicle trajectory before the lane change initiation process is essential to the design of a safe and reliable crash avoidance system. The recently introduced connected vehicle (CV) technology provides opportunities for real-time, high-resolution data exchange capability between vehicles. This study explored the high-resolution vehicle trajectory data attainable in CV environments for detecting the onset of lane change maneuvers. The observed change in behavior before the initiation of such a maneuver was examined to identify the associated driving pattern. This pattern was used to develop two lane change detection models: an artificial neural network (ANN) model and a multiple logistic regression (MLR) model. The two models were trained and tested with Next Generation Simulation data collected from a weaving freeway segment in Arlington, Virginia. The results show 80% detection accuracy for the ANN model, compared with 72% for the MLR model. The developed models identified the vehicle speed, acceleration, and speed relative to the lead vehicle as the most significant attributes for lane change detection. Drivers’ intentions could be detected early and potential crashes could be prevented by training these models to capture similar driving behavior patterns.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference9 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3