Application of Stochastic Gradient Boosting Technique to Enhance Reliability of Real-Time Risk Assessment

Author:

Ahmed Mohamed M.12,Abdel-Aty Mohamed1

Affiliation:

1. Department of Civil, Environmental, and Construction Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2450.

2. Department of Civil and Architectural Engineering, College of Engineering and Applied Science, University of Wyoming, Engineering Building, Room 3055, 1000 East University Avenue, Laramie, WY 82071.

Abstract

This study proposes a new and promising machine learning technique to enhance the reliability of real-time risk assessment on freeways. Stochastic gradient boosting (SGB) is used to identify hazardous conditions on the basis of traffic data collected from multiple detection systems such as automatic vehicle identification (AVI), remote traffic microwave sensors (RTMS), real-time weather stations, and roadway geometry. SGB's key strengths lie in its capability to fit complex nonlinear relationships; it handles different types of predictors and accommodates missing values with no need for prior transformation of the predictor variables or elimination of outliers, as with real-time applications. Boosting multiple simple trees together overcomes the poor prediction accuracy of singletree models and provides fast and superior predictive performance. Three models are calibrated: a full model that augments all available data and another two models to compare explicitly the prediction performance of traffic data collected from different sources (AVI and RTMS) at the same location. The results from the preliminary analysis as well as the calibrated models indicate that crash prediction by AVI is comparable to that by RTMS data. Moreover, the full model achieves superior classification accuracy by identifying about 89% of crash cases in the validation data set with only a 6.5% false positive rate. Because of its superior classification performance and its minimal required data preparation, SGB is recommended as a promising technique for real-time risk assessment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3