Affiliation:
1. Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322-4110
Abstract
A mean-variance model was developed for determining the optimal toll and capacity in a build-operate-transfer (BOT) roadway project subject to traffic demand uncertainty. This mean-variance model involves two objectives: maximizing mean profit and minimizing the variance (or standard deviation) of profit. The variance associated with profit is considered as a risk. Because maximizing expected profit and minimizing risk are often conflicting, there may not be a single best solution that can simultaneously optimize both objectives. Hence, it is necessary to explicitly consider this as a multiobjective problem so that a set of nondominated solutions can be generated. In this study, the optimal toll and capacity selection for the BOT problem under demand uncertainty is formulated as a special case of the stochastic network design problem. A simulation-based multiobjective genetic algorithm was developed to solve this stochastic bilevel mathematical programming formulation. Numerical results are also presented as a case study.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献