Travel Speed Forecasting by Means of Continuous Conditional Random Fields

Author:

Djuric Nemanja1,Radosavljevic Vladan2,Coric Vladimir3,Vucetic Slobodan4

Affiliation:

1. 319 Wachman Hall, Department of Computer and Information Sciences, Temple University, 1805 North Broad Street, Philadelphia, PA 19122.

2. 323 Wachman Hall, Department of Computer and Information Sciences, Temple University, 1805 North Broad Street, Philadelphia, PA 19122.

3. 206 Wachman Hall, Department of Computer and Information Sciences, Temple University, 1805 North Broad Street, Philadelphia, PA 19122.

4. 304 Wachman Hall, Department of Computer and Information Sciences, Temple University, 1805 North Broad Street, Philadelphia, PA 19122.

Abstract

This paper explores the application of the recently proposed continuous conditional random fields (CCRF) to travel forecasting. CCRF is a flexible, probabilistic framework that can seamlessly incorporate multiple traffic predictors and exploit spatial and temporal correlations inherently present in traffic data. In addition to improving prediction accuracy, the probabilistic approach provides information about prediction uncertainty. Moreover, information about the relative importance of particular predictor and spatial–temporal correlations can be easily extracted from the model. CCRF is fault-tolerant and can provide predictions even when some observations are missing. Several CCRF models were applied to the problem of travel speed prediction in a range from 10 to 60 min ahead and evaluated on loop detector data from a 5.71-mi section of I-35W in Minneapolis, Minnesota. Several CCRF models, with increasing levels of complexity, are proposed to assess performance of the method better. When these CCRF models were compared with the linear regression model, they reduced the mean absolute error by around 4%. The results imply that modeling spatial and temporal neighborhoods in traffic data and combining various baseline predictors under the CCRF framework can be beneficial.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3