Effect of Hydrated Lime on Long-Term Oxidative Aging Characteristics of Asphalt

Author:

Huang Shin-Che1,Claine Petersen J.2,Robertson Raymond1,Branthaver Jan F.1

Affiliation:

1. Western Research Institute, 365 North 9th Street, Laramie, WY 82072-3380

2. 1316 Jennifer Court, Loveland, CO 80537

Abstract

An experiment involving neat asphalts AAD-1, ABD, and their mixtures with two different grades of hydrated lime was conducted to investigate the effect of lime on the long-term aging characteristics of asphalt binders. Rheological properties of unaged and aged asphalt-lime mixtures were measured with a dynamic shear rheometer at 25°C (77°F) and 60°C (140°F). The addition of hydrated lime to one asphalt (AAD-1) effectively reduced oxidative age hardening. In addition, the phase angle reached the same value as aging time reached after approximately 800 h at 60°C in the pressure-aging vessel for AAD-1 and its mixtures with lime. After 800 h of aging, the phase angle was greater for the limetreated asphalt than for the untreated asphalt, and it continued to decrease at a slower rate. This result indicates that the addition of lime to this asphalt increases the initial stiffness of the binder, but, more importantly, it preserves elasticity during long-term oxidative aging. Thus, for this asphalt, at a level of oxidation typical of pavements, limetreated and untreated asphalts arrived at the same viscosity with time, but the lime-treated asphalt had better viscous flow properties than the untreated asphalt. It could then be predicted that the aged, lime-treated asphalt would be more resistant to fatigue cracking. The other asphalt tested (ABD) did not exhibit substantial effects of lime on the rate of oxidative age hardening. This highly compatible, low-asphaltene asphalt is not typical of most paving asphalts. Because hydrated lime has been shown to reduce oxidative age hardening both in the laboratory and during the first few years in the pavement, adding hydrated lime should extend the useful lifetime of most asphalt pavements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3