Analysis of Driver Behavior in Dilemma Zones at Signalized Intersections

Author:

Gates Tim J.12,Noyce David A.3,Laracuente Luis1,Nordheim Erik V.4

Affiliation:

1. B243 Engineering Hall, University of Wisconsin–Madison, Department of Civil and Environmental Engineering, 1415 Engineering Drive, Madison, WI 53706.

2. Department of Civil and Environmental Engineering, Wayne State Unversity, 5050 Anthony Wayne Drive, Detroit, MI 48202.

3. 1210 Engineering Hall, University of Wisconsin–Madison, Department of Civil and Environmental Engineering, 1415 Engineering Drive, Madison, WI 53706.

4. Department of Statistics, University of Wisconsin–Madison, 1110 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706.

Abstract

A field study evaluated the stopping characteristics of vehicles 2.5 to 5.5 s upstream of signalized intersections at the start of a yellow interval, a region typically considered drivers' indecision zone or dilemma zone. Characteristics included brake-response times for first-to-stop vehicles, deceleration rates for first-to-stop vehicles, distinguishing characteristics and prediction of first-to-stop versus last-to-go events, and distinguishing characteristics and prediction of red-light-running events. Consumer-grade video cameras temporarily installed at four high-speed and two low-speed intersections in the Madison, Wisconsin, area recorded dilemma zone vehicles. Several factors were measured for each last-to-go (n = 435) and first-to-stop (n = 463) vehicle in each lane during each yellow interval, including approach speed; distance upstream at start of yellow; brake-response time; deceleration rate; vehicle type; headway; tailway; action of vehicles in adjacent lanes; presence of side-street vehicles, pedestrians, bicycles, or opposing vehicles waiting to turn left; flow rate; length of yellow interval; and cycle length. The observed 15th, 50th, and 85th percentile brake-response times for first-to-stop vehicles were 0.7, 1.0, and 1.6 s, respectively; their observed deceleration rates were 7.2, 9.9, and 12.9 ft/s2, respectively. Vehicles were more likely to go through than to stop under the following conditions: shorter estimated travel time to intersection at start of yellow; longer yellow interval; the subject was a heavy vehicle (truck, bus, recreational vehicle); absence of side-street vehicles, bicycles, pedestrians, and opposing left-turn vehicles; and presence of vehicles in adjacent lanes that went through. Heavy vehicles were more likely than passenger vehicles to run a red light. Vehicles were more likely to run a red light when vehicles in adjacent lanes that also went through were present and when side-street vehicles, bicycles, pedestrians, and opposing left-turn vehicles were absent.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3