New Calibration Methodology for Microscopic Traffic Simulation Using Enhanced Simultaneous Perturbation Stochastic Approximation Approach

Author:

Lee Jung-Beom1,Ozbay Kaan1

Affiliation:

1. Department of Transportation Engineering, University of Seoul, 90 Jeonnong-Dong, Dongdaemun-Gu, Seoul, 130-743, South Korea.

Abstract

Traffic simulation models can represent real-world conditions such as delays, travel times, queues, and flows. However, accurate evaluation of these traffic conditions depends on the selection of model parameters and the calibration methodology. Most previous calibration studies have focused on minimizing the sum of the differences between the observed data and simulation output during a certain time period on a typical day. However, to capture a realistic distribution of all possible traffic conditions, a more general calibration methodology that can be used with any traffic condition is required. This paper proposes a new calibration methodology–-the Bayesian sampling approach in conjunction with the application of the simultaneous perturbation stochastic approximation (SPSA) optimization method [enhanced SPSA (E-SPSA)]–-that enables the modeler to enhance calibration by considering statistical data distribution. Instead of calibrating with input data for certain time periods, calibration is performed with data obtained from a complete input distribution. Mean square variation (MSV) was used to evaluate the accuracy of the proposed E-SPSA calibration approach. On the basis of the MSV of flows, the MSV value of the E-SPSA methodology was found to be 0.940, which was greater than the variation of speed obtained from SPSA-only (0.897) or from a variation approach (0.888). Thus, this proposed methodology not only makes it possible to overcome some of the limitations of previous calibration approaches, but also improves the results of simulation model calibration by accurately capturing a wide range of real-world conditions. Future work will focus on testing the proposed calibration methodology using more extensive data sets and models developed using simulation tools other than PARAMICS.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3