Three-Dimensional Modeling of Spatial Soil Properties via Artificial Neural Networks

Author:

Itani Omar M.1,Najjar Yacoub M.1

Affiliation:

1. Department of Civil Engineering, Kansas State University, Manhattan, KS 66506

Abstract

Geotechnical engineers recognize the variability of the geological materials they work with, including uncertainties associated with subsurface characterization tasks. These uncertainties include data scattering, such as real spatial variation in soil properties, or random testing errors. Systematic errors, as can occur in bias measurement procedures, are also common. In almost all construction projects, penetration tests play a major role in subsoil characterization. Interpretation of test results is mostly empirical, and it is therefore prudent to find a suitable computational method to minimize the error in predicting values at points away from actual test locations. In this research, the capabilities of artificial neural networks (ANNs) are assessed as a computational method for predicting standard penetration test (SPT) results at any point ( x, y, z) in a field where a set of SPTs is performed. SPT and moisture content data for five bore holes are used to train and test the developed three-dimensional network models. To graphically visualize the underlying soil strata, select contour maps of blows and moisture content values at various locations are presented. The results obtained indicate the viability and flexibility of ANN methodology as an efficient tool for site characterization tasks.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3