Affiliation:
1. Center for Air Transportation Systems Research, and George Mason University, Fairfax, VA 22030.
2. Department of Systems Engineering and Operations Research, George Mason University, Fairfax, VA 22030.
Abstract
On the basis of weather and high traffic, the Next Generation Air Transportation System envisions an airspace that is adaptable, flexible, controller friendly, and dynamic. Sector geometries, developed with average traffic patterns, have remained structurally static with occasional changes in geometry due to limited forming of sectors. Dynamic airspace configuration aims at migrating from a rigid to a more flexible airspace structure. Efficient management of airspace capacity is important to ensure safe and systematic operation of the U.S. National Airspace System and maximum benefit to stakeholders. The primary initiative is to strike a balance between airspace capacity and air traffic demand. Imbalances in capacity and demand are resolved by initiatives such as the ground delay program and rerouting, often resulting in systemwide delays. This paper, a proof of concept for the dynamic programming approach to dynamic airspace configuration by static forming of sectors, addresses static forming of sectors by partitioning airspace according to controller workload. The paper applies the dynamic programming technique to generate sectors in the Fort Worth, Texas, Air Route Traffic Control Center; compares it with current sectors; and lays a foundation for future work. Initial results of the dynamic programming methodology are promising in terms of sector shapes and the number of sectors that are comparable to current operations.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献