Fatigue Behavior of Rubber-Modified Pavements

Author:

Raad Lutfi1,Saboundjian Stephan1

Affiliation:

1. Transportation Research Center, University of Alaska, Fairbanks, AK 99775-5900

Abstract

Over the last 18 years, a number of rubberized pavement projects have been built in Alaska. Initial laboratory and field investigations sponsored by the Alaska Department of Transportation and Public Facilities (AKDOT&PF) and conducted by Raad et al. indicated improved fatigue performance of the rubberized sections in comparison with conventional asphalt concrete pavements. The results of a follow-up investigation to develop design equations for rubberized pavements in Alaska are presented. Laboratory studies were conducted on field specimens using the flexural fatigue test in the controlled-displacement mode. Specifically, the rubberized mixes included asphalt-rubber concrete with AC-2.5 (wet-process) and PlusRide RUMAC with AC-5. Tests were performed for a range of temperatures varying between 22°C and –29°C. Fatigue relationships were developed in terms of repeated flexure strain, dynamic flexure stiffness of the mix, and repetitions to failure. Relationships for the dynamic flexure stiffness as a function of temperature were also developed. Dissipated energy associated with repeated flexure stress and strain was determined and used to assess the damage behavior of conventional and rubberized mixes. The proposed fatigue equations were used to compare the behavior of the rubberized mixes with conventional AC-5 mixes at 20°C and 0°C. Results of the analysis show that at 20°C, asphalt-rubber and AC-5 mixes exhibit essentially similar fatigue resistance, whereas PlusRide has the least fatigue life. However, at 0°C, the fatigue resistance of PlusRide and asphalt-rubber exceeds that of the conventional AC-5 mix. The fatigue equations were also used to compare the fatigue life of conventional and rubberized pavements for different surface layer temperatures and foundation support conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3