Optimization of Tack Coat Application Rate for Geocomposite Membrane on Bridge Decks

Author:

Donovan Erin P.1,Al-Qadi Imad L.2,Loulizi Amara3

Affiliation:

1. Charles Edward Via, Jr., Department of Civil and Environmental Engineering, 200 Patton Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

2. Virginia Tech Transportation Institute, 3500 Transportation Research Drive, Blacksburg, VA 24061

3. Anderson & Associates, Inc., 100 Ardmore Street, Blacksburg, VA 24060

Abstract

One of the critical components of the U.S. civil infrastructure, bridges, has rapidly deteriorated in the past two decades and is in need of maintenance and rehabilitation. Geosynthetics may have the potential to provide a long-term solution to some of the problems that are present in these bridges, mainly, chloride intrusion into bridge decks. When installed properly, geosynthetics can act as both a moisture barrier and a stress absorption layer. However, the tack coat application rate is critical, as an excessive amount can cause eventual slippage, whereas too little may result in debonding. A new geocomposite membrane that comprises a low-modulus polyvinyl chloride layer sandwiched between two layers of nonwoven geotextile has recently been introduced for use in highway systems for water impermeation and strain energy absorption. A laboratory testing program was conducted to determine the optimum asphalt binder tack coat application rate that needs to be applied in the field. To accomplish this, a fixture was designed to allow the application of cyclic shear loading at the geocomposite membrane interface when used as an interlayer simulating a concrete bridge deck overlaid with the geocomposite membrane and a hot-mix asphalt (HMA) overlay. The study concluded that 1.75 kg of PG 64-22 binder per m2 is an optimum value to achieve excellent bonding and minimum slippage potential. For the upper surface in contact with a wearing surface mix, a tack coat application rate of 1.5 kg/m2 may be used. When the geocomposite membrane was included between concrete and HMA, failure occurred after a much larger number of applied loading cycles than the number of loading cycles to failure when the geocomposite was absent. In addition, the slope of shear stress versus the number of loading cycles at failure was much greater when the geocomposite was absent.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference9 articles.

1. The role of geosynthetics on USA highways

2. FluetJ.Jr. Geosynthetics for Soil Improvement: A General Report and Keynote Address. ASCE Geotechnical Special Publication No. 18. ASCE, Nashville, Tenn., 1988, pp. 1–21.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3