Vehicle Dynamics Model for Estimating Maximum Light-Duty Vehicle Acceleration Levels

Author:

Rakha Hesham1,Snare Matthew1,Dion François2

Affiliation:

1. Charles Via Department of Civil and Environmental Engineering, Transportation Institute, Virginia Polytechnic Institute and State University, 3500 Transportation Research Plaza (0536), Blacksburg, VA 24061

2. Department of Civil and Environmental Engineering, Michigan State University, 3568 Engineering Building, East Lansing, MI 48824

Abstract

A vehicle dynamics model for predicting maximum light-duty vehicle accelerations for use within a microscopic traffic simulation environment is presented and validated. The research also constructs a database of unconstrained vehicle acceleration data for 13 light-duty vehicles and trucks. With the use of the field data, the proposed vehicle dynamics model is validated and compared with a number of state-of-the-art vehicle acceleration models, including the Searle model and the dual-regime, linear decay, and polynomial models. The advantages of the proposed model include its ability to predict vehicle behavior accurately with readily available input parameters and its flexibility in estimating acceleration rates of both large and small vehicles on varied types of terrain.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3