Development of a Predictive Model Based on an Artificial Neural Network for the Semicircular Bend Test

Author:

Cooper Samuel B.1,Cooper Samuel B.1,Mohammad Louay N.1,Elseifi Mostafa A.1

Affiliation:

1. Department of Civil and Environmental Engineering, Louisiana Transportation Research Center, Louisiana State University, 4101 Gourrier Avenue, Baton Rouge, LA 70808

Abstract

One of the major distresses in asphalt pavements is fatigue cracking. To avoid premature cracking failure in the field, it is necessary to characterize an asphalt mixture’s fracture resistance in the laboratory before the mixture is produced and constructed. In 2014, Louisiana decided to implement the semicircular bend (SCB) test as part of a balanced mix design procedure. However, fabrication and testing of SCB specimens can take up to 7 days after the asphalt mixture has been successfully designed in accordance with specification criteria. This study developed a predictive model for the SCB that was based on an artificial neural network that used the volumetric properties of asphalt mixture. This predictive model can be used by practitioners during the mixture design process to estimate the critical value of the J-integral, or Jc. To formulate and validate the model, 31 asphalt mixtures representing a wide range of design and production practices were tested with the SCB test. Statistical analysis (Pearson’s correlation, coefficient of determination, and the general linear model procedure) was then used in determining correlations between the dependent and independent variables and in the development of the predicted SCB test model. In addition, multicollinearity among and between independent variables was evaluated. The artificial neural network was used to develop and validate the SCB model. It is shown that the developed model can be used to predict the critical strain energy release rate, Jc, of aged asphalt mixtures with reasonable accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference17 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3