Dynamic Modulus Prediction of Asphalt Concrete Mixtures through Computational Micromechanics

Author:

Karki Pravat1,Kim Yong-Rak2,Little Dallas N.3

Affiliation:

1. Room 362D, Department of Civil Engineering, Whittier Research Center, University of Nebraska, Lincoln, NE 68583.

2. Room 362N, Department of Civil Engineering, Whittier Research Center, University of Nebraska, Lincoln, NE 68583.

3. Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, 603E CVLB Building, College Station, TX 77843.

Abstract

This paper presents a computational micromechanics modeling approach to predict the dynamic modulus of asphalt concrete mixtures. The modeling uses a finite element method combined with the micromechanical representative volume element (RVE) of mixtures and laboratory tests that characterize the properties of individual mixture constituents. The model treats asphalt concrete mixtures as heterogeneous with two primary phases: a linear viscoelastic fine aggregate matrix (FAM) phase and a linear elastic aggregate phase. The mechanical properties of each phase were experimentally obtained by conducting constitutive tests: oscillatory torsion tests for the viscoelastic FAM phase and quasistatic nanoindentation tests for the elastic aggregate particles. Material properties of each mixture phase were then used in the finite element simulation of two-dimensional mixture microstructures obtained from digital image processes of asphalt concrete mixtures. Model simulations were compared with the experimental dynamic moduli of asphalt concrete mixtures. Simulation results indicated that the micromechanical approach based on the mixture microstructure and phase properties could fairly predict the overall mixture properties that are typically obtained from laboratory mixture tests. Furthermore, the RVE dimension of 60 mm might be used to predict the undamaged viscoelastic stiffness characteristics of asphalt concrete mixtures with reduced computing efforts.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3