Effect of Microbial-Induced Calcite Precipitation on Surface Erosion and Scour of Granular Soils

Author:

Bao Ruotian1,Li Junhong1,Li Lin2,Cutright Teresa J.1,Chen Long3,Zhu Jiahua3,Tao Junliang1

Affiliation:

1. Department of Civil Engineering, University of Akron, 244 Sumner Street, Akron, OH 44325.

2. Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS 39217-0168.

3. Department of Chemical and Biomolecular Engineering, University of Akron, 244 Sumner Street, Akron, OH 44325.

Abstract

Erosion is relevant to a variety of infrastructure problems such as bridge scour, roadway shoulder erosion, coastal erosion, and riverbank and slope stability. This research investigated the feasibility of using microbial-induced calcite precipitation (MICP) as an erosion countermeasure. MICP is a natural phenomenon in which calcite precipitation occurs as a consequence of microbial metabolic activity. The precipitated calcite modifies the soil fabric and provides an additional bonding force between soil particles. In this paper, a preliminary experimental study on the erosional behavior of MICP-treated sand is presented. A standard soil, Ottawa graded sand, was treated with a bacterium (Sporosarcina pasteurii) in a full-contact reactor-one in which the soil in a fabric mold was fully immersed in the bacteria and cementation solution. The morphologies and crystalline structures of the precipitated calcite in porous sediments were characterized using microscopic imaging techniques. The treated soil samples were tested in a flume to investigate the erosional behavior; both surface erosion and bridge scour tests were conducted. Although the untreated soil is highly erodible, the erosion of the treated sand was found to be negligible under the circumstances of the test; however, some concerns were raised regarding practical applications. Efforts will be made in the future to identify alternative treatment procedures that are more applicable to the field.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3