Buses as a Traffic Probe: Demonstration Project

Author:

Hall Randolph W.1,Vyas Nilesh1

Affiliation:

1. Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA 90089-0193

Abstract

The congestion probe feature of the Orange County Transportation Authority (California) bus probe project was evaluated by comparing automobile and bus trajectories and examining alternative congestion detection methods. The focus was city streets on which delays occur at signalized intersections and bus delays at bus stops. The analysis revealed that when automobiles have long delays, buses traveling nearby on the same route are also likely to be delayed. The reverse situation, however, is not always true, because buses frequently wait for extended periods when they run ahead of schedule. Any useful bus probe algorithm needs to distinguish between actual congestion and a stopping delay. Although the transit probe was designed to measure congestion on roadway segments, a more useful approach would be to measure congestion approaching major intersections, where delays are likely to occur. Moreover, because delays randomly fluctuate according to a vehicle’s arrival time relative to the signal cycle, the most sensible approach is to set off a "congestion alarm" when a vehicle is delayed by more than one cycle at an intersection. A congestion alarm would indicate oversaturation and delay well above normal.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference16 articles.

1. BhandariN., SethiV., KoppelmanF. S., and SchoferJ. L. Calibration of Probe Vehicle and Fixed Detector Algorithm with Initial Field Data. ADVANCE Project Technical Report TRF-ID-201. Transportation Center, Northwestern University, Evanston, Ill., 1995.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3