Modeling Learning in Route Choice

Author:

Bogers Enide A. I.1,Bierlaire Michel2,Hoogendoorn Serge P.1

Affiliation:

1. Delft University of Technology, Transportation and Planning Section, P.O. Box 5048, 2600 GA Delft, Netherlands.

2. Ecole Polytechnique Fédérale de Lausanne, Transport and Mobility Laboratory, Station 8, 1015 Lausanne, Switzerland.

Abstract

Performing the same trip many times, travelers can learn about available routes from their experiences. Two types of learning found in psychological learning theory appear to play a role in day-to-day route choice: implicit (reinforcement-based) and explicit (belief-based). Memory decay also plays a major role. Although much progress had been made in modeling learning in route choice, a model that captures both learning types and for which the parameters are empirically underpinned was not found. Such a model thus is developed, and a large data set from experimental research is used to validate it and to estimate its parameters. The developed model uses a Markov formulation for the day-to-day updating of a person's belief about travel time (i.e., perceived travel time) on a route. Reinforcement (and inertia) is modeled by including the latest 10 route choices in the model. Results indicate that 20% of perceived travel time is from the most recent experience; therefore, formulations that use either the mathematical mean of all past experienced travel times or only the most recent travel times are not accurate. Furthermore, the reinforcement–inertia part of the model can make up a significant part of the route utility and therefore should be a standard component in route choice models. In sum, the results validate the theoretical and mathematical model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3