Network Analysis of World Subway Systems Using Updated Graph Theory

Author:

Derrible Sybil1,Kennedy Christopher1

Affiliation:

1. Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.

Abstract

This paper demonstrates that network topologies play a key role in attracting people to use public transit; ridership is not solely determined by cultural characteristics (North American versus European versus Asian) or city design (transit oriented versus automobile oriented). The analysis considers 19 subway systems worldwide: those in Toronto, Ontario, Canada; Montreal, Quebec, Canada; Chicago, Illinois; New York City; Washington, D.C.; San Francisco, California; Mexico City, Mexico; London; Paris; Lyon, France; Madrid, Spain; Berlin; Athens, Greece; Stockholm, Sweden; Moscow; Tokyo; Osaka, Japan; Seoul, South Korea; and Singapore. The relationship between ridership and network design was studied by using updated graph theory concepts. Ridership was computed as the annual number of boardings per capita. Network design was measured according to three major indicators. The first is a measure of transit coverage and is based on the total number of stations and land area. The second relates to the maximum number of transfers necessary to go from one station to another and is called directness. The third attempts to get an overall view of transfer possibilities to travel in the network to appreciate a sense of mobility; it is termed connectivity. Multiple-regression analysis showed a strong relationship between these three indicators and ridership, achieving a goodness of fit (adjusted R2 value) of .725. The importance of network design is significant and should be considered in future public transportation projects.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference16 articles.

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3