Affiliation:
1. Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
Abstract
This paper demonstrates that network topologies play a key role in attracting people to use public transit; ridership is not solely determined by cultural characteristics (North American versus European versus Asian) or city design (transit oriented versus automobile oriented). The analysis considers 19 subway systems worldwide: those in Toronto, Ontario, Canada; Montreal, Quebec, Canada; Chicago, Illinois; New York City; Washington, D.C.; San Francisco, California; Mexico City, Mexico; London; Paris; Lyon, France; Madrid, Spain; Berlin; Athens, Greece; Stockholm, Sweden; Moscow; Tokyo; Osaka, Japan; Seoul, South Korea; and Singapore. The relationship between ridership and network design was studied by using updated graph theory concepts. Ridership was computed as the annual number of boardings per capita. Network design was measured according to three major indicators. The first is a measure of transit coverage and is based on the total number of stations and land area. The second relates to the maximum number of transfers necessary to go from one station to another and is called directness. The third attempts to get an overall view of transfer possibilities to travel in the network to appreciate a sense of mobility; it is termed connectivity. Multiple-regression analysis showed a strong relationship between these three indicators and ridership, achieving a goodness of fit (adjusted R2 value) of .725. The importance of network design is significant and should be considered in future public transportation projects.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
137 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献