Real-Time Disruption Recovery for Integrated Berth Allocation and Crane Assignment in Container Terminals

Author:

Li Meng Ze1,Jin Jian Gang1,Lu Chun Xia1

Affiliation:

1. School of Naval Architecture and Ocean and Civil Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, China.

Abstract

This paper studies disruption recovery optimization for the integrated berth allocation and quay crane assignment problem in container terminals. The proposed reactive recovery strategy adjusts the initial plan to handle realistic disruptions. In the proposed recovery strategy, new berthing positions for vessels are restricted within a certain space. Quay cranes are allowed to move to other vessels before finishing current assigned vessels. Vessels requiring early dispatch are particularly considered in recovery planning. A proposed nonlinear programming model maximizes the service quality and minimizes the recovery cost at the same time. A heuristic approach based on squeaky wheel optimization is developed to solve the model. Computational experiments are conducted to show the performance and effectiveness of the proposed model and solution method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3