Calibrated Labeling Method for Generating Bicyclist Route Choice Sets Incorporating Unbiased Attribute Variation

Author:

Broach Joseph1,Gliebe John1,Dill Jennifer1

Affiliation:

1. Nohad A. Toulan School of Urban Studies and Planning, Portland State University, P.O. Box 751, Portland, OR 97207-0751.

Abstract

Discrete choice model estimation requires specification of the alternatives considered for each observed choice. In route choice problems based on real-world travel observations, generally only the chosen route is observed, and the rest of the choice set remains hidden from the analyst. In dense travel networks, thousands of paths may connect a given origin or destination, necessitating methods for generating a reasonable subset of options. A new method is proposed for generating deterministic route choice sets. The technique modifies the labeled routes method, in which multiple criteria are optimized individually to generate attractive routes. The proposed method offers two potential improvements: (a) multiple routes are generated for each label by allowing a sensitivity parameter to vary and (b) a calibration step fits the alternative shortest path deviation distribution to observed behavior. The resulting process is more flexible than traditional labeled routes, yet it maintains strong links to behavior and reduces potential attribute bias. The proposed calibrated labeling method is applied to bicyclist route choice in a dense urban network. Results suggest that the proposed technique outperforms existing methods on several key criteria. In addition, explicitly linking choice set generation to observed travel patterns creates a more intuitive behavioral link than existing strategies. The proposed method should be immediately useful for route choice modeling in similar contexts. Furthermore, the basic framework could be more broadly applicable for route choice set generation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3