Comprehensive Evaluation of Feedback-Based Freeway Ramp-Metering Strategy by Using Microscopic Simulation: Taking Ramp Queues into Account

Author:

Ozbay Kaan1,Yasar Ilgin1,Kachroo Pushkin2

Affiliation:

1. Center for Advanced Infrastructure and Transportation, Civil and Environmental Engineering, Rutgers University, 632 Bowser Road, Piscataway, NJ 08854-8014

2. Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacks-burg, VA 24061-0111

Abstract

One of the major criticisms of ramp metering has been delay caused on the ramps because of the queues created by ramp control strategies. Recently, several researchers proposed strategies that explicitly consider ramp queues when metering rates are determined. An isolated "feedback"-based ramp-metering strategy (mixed control) is presented. In addition to regulation of ramp input from the freeway, the strategy calls for regulation of ramp queues by explicitly incorporating them into the model. Mixed control is tested using PARAMICS, a microscopic traffic simulation package, on a calibrated test network located in Hayward, California. In addition to mixed control, ALINEA and new control are implemented. Because the focus here is on evaluation of isolated ramp control strategies, change in demand caused by ramp metering is not considered. The system is defined as the upstream, downstream, and ramp links around the metered ramp. The performance of two freeway demand patterns (congested and overcongested) is compared. From the simulation results, all the strategies tested were found to be quite effective in optimizing freeway traffic conditions [reduction in mean congestion duration on the freeway downstream link, mean downstream occupancy, and travel time (upstream and downstream links)]. However, mixed control produced the best system results (upstream, downstream, and ramp links) by achieving optimal flow on the highway while keeping the queue length on the ramp small enough to prevent spillover onto the arterial network.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference14 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3