Effect of Binder Type, Aggregate, and Mixture Composition on Fracture Energy of Hot-Mix Asphalt in Cold Climates

Author:

Braham Andrew F.1,Buttlar William G.2,Marasteanu Mihai O.3

Affiliation:

1. B226 Newmark Civil Engineering Laboratory, MC-250, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801.

2. 1212 Newmark Civil Engineering Laboratory, MC-250, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801.

3. Department of Civil Engineering, University of Minnesota, CivE 164, 500 Pillsbury Drive Southeast, Minneapolis, MN 55455.

Abstract

Detrimental effects of low-temperature cracking of asphalt pavements and overlays have motivated new work in fracture testing of hot-mix asphalt (HMA). Recent work has indicated that the fracture behavior of asphalt concrete at low temperatures can be accurately predicted with a testing and modeling system that, along with viscoelastic bulk material properties, relies simply on fracture energy and material strength. In this study, the disk-shaped compact tension test is used to measure fracture energy of 28 HMA mixtures designed for cold climates. Four parameters are investigated: aggregate type (limestone and granite), temperature (three temperatures, encompassing the Superpave® performance graded binder low temperature grade for each binder tested), asphalt content (Superpave design asphalt content and Superpave design content plus 0.5%), and air voids (4% and 7%). A statistical analysis of results demonstrates the significance for fracture energy of binder content at higher temperatures, aggregate type, and temperature. The air void levels selected and binder content at lower temperatures, however, did not lead to a significant difference in fracture energy. An extrapolation technique is presented that was found to present a rational means for interpreting data from tests that were not finished because of equipment constraints.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3