Long Green Times and Cycles at Congested Traffic Signals

Author:

Denney Richard W.1,Curtis Eddie2,Head Larry3

Affiliation:

1. 107 Carpenter Drive, Suite 230, Sterling, VA 20164.

2. FHWA Resource Center, 61 Forsyth Street SW, Suite 17T26, Atlanta, GA 30303.

3. System and Industrial Engineering Department, University of Arizona, Tucson, AZ 95721.

Abstract

Field data were collected and simulation experiments based on traffic at an intersection in Virginia were conducted to test the hypothesis that headways increase with long green times and to test the common assumption that throughput increases with longer cycles. The results showed that headways increased with long green times as a result of departing turning vehicles and that this effect could cause a significant increase in overall average approach headways. The results also showed that maximum throughput, defined as the point where additional offered load could not be served, did not increase with longer cycles. With values derived from the field data, increasing the cycle did not increase throughput. In simulation, increasing the cycle caused a reduction in throughput as a result of increasing the effect of departing turning traffic on the average headway.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference7 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3