Analysis and Evaluation of the Capacity of Roundabouts

Author:

Polus Abishai1,Shmueli Sitvanit1

Affiliation:

1. Department of Civil Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

Abstract

Roundabouts are replacing conventional unsignalized intersections in many parts of the world and could become more widespread in the United States, although there are some limitations as well as clear advantages. Models for entry capacity into the rotary were developed. Entry capacity depends on the geometric characteristics of the roundabout, particularly the diameter of the outside circle of the intersection. The geometric characteristics determine the speed of vehicles around the central island and, therefore, have an impact on the gap-acceptance process and consequently the capacity. Traffic conditions that impede entry capacity involve the flow around the roundabout. Flow and geometric data from six small to medium-sized roundabouts were analyzed. Individual and aggregated entry-capacity models were calibrated by using the diameter and circulating flows as explanatory variables. Very good fits to the data were obtained; the results also fit models developed in other countries. The Australian model resulted in slightly higher entry capacities for moderate to low circulating flows and lower entry capacities for high circulating flows. Very close proximity to the German model was obtained, although it does not depend on the geometric characteristics of the circle. The roundabout provides an advantage over a conventional unsignalized intersection. A faithful concurrence between the model developed and the latest Highway Capacity Manual model for right-turn capacity at an unsignalized intersection is obtained if the circulating flow is replaced by the conflicting flow. The advantage of entry capacities of the roundabout over the calculated capacities of the Highway Capacity Manual left-turn model is shown. Further research is proposed to study the effect on entry capacity of two circulating lanes rather than one and the effect of the increase in circulating flows on the gap-acceptance process, particularly the reduction in critical gap at high flows.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3