Evaluation of Asphalt Damage and Cracking Development with Seismic Pavement Analyzer

Author:

Jurado Monica1,Gibson Nelson2,Celaya Manuel3,Nazarian Soheil3

Affiliation:

1. Federal Highway Administration, 4001 Office Court Drive, Suite 801, Santa Fe, NM 87507.

2. Turner–Fairbank Highway Research Center, Federal Highway Administration, 6300 Georgetown Pike, McLean, VA 22101.

3. Center for Transportation Infrastructure Systems, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968.

Abstract

Fatigue cracking in asphalt pavements is an indicator of structural failure, and early detection of fatigue cracking would allow for improved preventive maintenance. The evaluation of cracking relies on the distress's being visible and possibly in advanced stages. Detection of load-related cracking at an early stage or before initiation is greatly needed. The portable seismic property analyzer (PSPA), a nondestructive device that monitors the change in modulus in pavement surface layers, was used in this study to measure the change in pavement stiffness response at the same time as the development of load-associated cracking. PSPA tests were conducted at the FHWA Turner–Fairbank Highway Research Center accelerated loading facility on full-scale test pavements being subjected to repeated wheel loading to induce cracking. PSPA measurements taken at a predetermined number of loading passes were evaluated to find crack initiation or propagation. The patterns for the amount of modulus reduction before and after the initiation of cracking were measurable and different for modified and unmodified binders. An unmodified asphalt section lost only between 25% and 33% of the original modulus before the initiation of surface cracks, whereas a polymer-modified asphalt lost between 62% and 57%. The cracking was top-down given the aged condition of the test sections.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference10 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3