Vehicle Trajectory Analysis System via Mutual Information and Sparse Reconstruction

Author:

Zhang Yishi1,Chen Zhijun2,Wu Chaozhong3,Jiang Junfeng4,Ran Bin5

Affiliation:

1. Management School, Jinan University, 601 Huangpu Street West, Guangzhou 510632, China

2. National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430063, China

3. Intelligent Transportation Systems Research Center, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430063, China

4. School of Information Engineering, Wuhan Technology and Business University, 3 Huangjiahuxi Road, Wuhan 430074, China

5. Traffic Operations and Safety Laboratory, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706

Abstract

In past years, the task of automatic vehicle trajectory analysis in video surveillance systems has gained increasing attention in the research community. Vehicle trajectory analysis can identify normal and abnormal vehicle motion patterns and is useful for traffic management. Although some analysis methods of vehicle trajectory have been developed, the application of these methods is still limited in practice. In this study, a novel adaptive vehicle trajectory classification method via sparse reconstruction and mutual information analysis based on video surveillance systems was proposed. The l0-norm minimization of sparse reconstruction in the method was relaxed to the lp-norm minimization (0 < p < 1). In addition, to consider the nonlinear correlation between the test trajectory and the dictionary, mutual information between the test trajectory and the reconstructed one was taken into account. A hybrid orthogonal matching pursuit–Newton method (HON) was developed to effectively find the sparse solutions for trajectory classification. Two real-world data sets (including the stop sign data set and straight data set) were used in the experiments to validate the performance and effectiveness of the proposed method. Experimental results show that the trajectory classification accuracy is significantly improved by the proposed method compared with most well-known classifiers, namely, NB, k–nearest neighbor, support vector machine, and typical extant sparse reconstruction methods.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3