Metal Culvert Response to Earth Loading: Performance of Two-Dimensional Analysis

Author:

Taleb Bahaa1,Moore Ian D.1

Affiliation:

1. Geotechnical Research Centre, The University of Western Ontario, London Ontario N6A 5B9 Canada

Abstract

The results of finite-element analyses conducted before and after testing of a 9.5-m span low-profile metal arch culvert are presented here. A two-dimensional procedure that models the elastic-plastic response of both structure and soil during backfilling has been used. A plasticity-based procedure to provide an upper bound for the effect of soil compaction on metal culvert response during side filling is introduced and used in the analysis of field response. The procedure involves application of passive earth pressures after layer placement to simulate the highest values of residual horizontal earth pressure. The pretest and posttest analyses are compared with measurements of field response previously published by Webb et al. Predictions for culvert deformation and bending moments generated during backfilling were excellent. The new procedure to include the effects of compaction during construction was effective in capturing culvert peaking during placement of the side fill and increases in bending moment. Both pre- and posttest predictions for deformation and moment successfully captured the culvert response during burial and the effect of backfill soil density. The posttest predictions include consideration of the top-loading applied during placement of the side fill. The predictions of deflection follow measured values during application and subsequent removal of those temporary surcharge loads. Estimates of soil stresses acting normal to the external surface of the culvert were shown to be close to those measured in the field. The analysis indicates that shear strength is fully mobilized in wedge-shaped zones of the backfill adjacent to the culvert. Those zones diminish in size once backfill is placed over the crown. The residual horizontal earth pressures that are modeled during compaction act to reduce the size of the plastic zones.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference17 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3