Measurement of Hydraulic Conductivity in Porous Mixes

Author:

Ranieri Vittorio1,Colonna Pasquale1,Sansalone John J.2,Sciddurlo Alessio3

Affiliation:

1. Department of Roads and Transportation, Polytechnic University of Bari, Via Re David N. 200, 70125, Bari, Italy.

2. Engineering School of Sustainable Infrastructure and Environment, University of Florida, 218 Black Hall, Gainesville, FL 32611.

3. Via E Toti N. 216, 70042, Mola di Bari, Italy.

Abstract

In the past two decades, runoff-permeable porous pavement and porous friction courses of pavement systems have been implemented more frequently, first in Europe and subsequently in the United States. Consequently, research and case studies are increasing, with a commensurate increase in the knowledge base for these drainable pavement matrices and systems. The main distinguishing parameter of these porous matrices is the hydraulic conductivity (k), as compared with traditional impervious pavements. Equipment and standards for measuring k vary widely. This variability includes laboratory and field permeameters, constant-head and falling-head permeameters, and methods based on differing equipment and differing protocols. In many cases, such variability generates results that are either difficult to compare or not comparable. As a result, the value of k that is generated from different methods and different equipment is uncertain. The disparate methods and measurement of k as a parameter challenge the researcher and the practitioner. During the development and specifying phase, the researcher and the designer require a representative value of k to ensure proper predictive models and design. During and after construction, the engineer and the practitioner require k for quality control. This paper illustrates and summarizes the available methods for measuring the k of pavement porous mixes. Some case studies are examined to verify the differences between methods and equipment used for determination of k. The European Standard UNI EN 12697-19 is examined through an experimental study. Theoretical and practical results help explain the measurement of k for pavements as a primary parameter of porous runoff-permeable mixes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3