Assessing the Sensitivity of Transportation Assets to Extreme Weather Events and Climate Change

Author:

Rowan Emily1,Evans Christopher2,Riley-Gilbert Marybeth3,Hyman Rob4,Kafalenos Rob4,Beucler Brian4,Rodehorst Beth1,Choate Anne5,Schultz Peter6

Affiliation:

1. ICF International, 620 Folsom Street, San Francisco, CA 94107.

2. ICF International, 222 Somerset Street West, Ottawa, ON K2P 2G3, Canada.

3. ICF International, 100 Cambridge Park Drive, Suite 500, Cambridge, MA 02140.

4. Federal Highway Administration, U.S. Department of Transportation, 1200 New Jersey Avenue, SE, Washington, DC 20590.

5. ICF International, 9147 Green Tree Road, Philadelphia PA 19118.

6. ICF International, 9300 Lee Highway, Fairfax, VA 22031.

Abstract

Transportation officials are increasingly faced with challenging decisions about how to design, plan, and manage infrastructure to confront changes in climate and extreme weather events. An understanding of which impacts affect infrastructure and at what point damage begins to occur is a critical step toward assessing overall vulnerability and risk. However, few resources exist to help managers and designers identify key thresholds and indicators of sensitivity to weather and climate impacts. This paper introduces a sensitivity matrix, a tool developed for the U.S. Department of Transportation's Gulf Coast Study, Phase 2, adaptation pilot project in Mobile, Alabama. This matrix is an important step toward a more comprehensive understanding of relationships between climate and transportation. Transportation planners can use this matrix to screen for assets that are particularly sensitive and, therefore, potentially vulnerable to climate change. Where possible, the matrix includes key thresholds at which damage may be observed. This resource can assist the transportation community in conducting climate vulnerability and risk assessments. This sensitivity matrix reveals three main conclusions about the sensitivity of the transportation system to climate stressors. First, transportation assets tend to be more sensitive to extreme events than to incremental changes in the mean of climate variables. Second, services such as maintenance, traffic conveyance, and safety often are more sensitive to climate stressors than are physical assets. Finally, an asset is often sensitive to stressors whose occurrence is relatively unlikely in comparison with typical weather variability.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3