Gas-Kinetic Modeling and Simulation of Pedestrian Flows

Author:

Hoogendoorn Serge1,Bovy Piet H. L.1

Affiliation:

1. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1 – P.O. Box 5048, NL-2600 GA, Delft, Netherlands

Abstract

Insight into pedestrian flow operations is important in both planning and geometric design of infrastructure facilities such as railway stations as well as in the management of pedestrian flows in such facilities. Lack of empirical knowledge regarding the characteristics of pedestrian flows under varying circumstances and designs motivates using a model-based approach. In this study, a new pedestrian flow model based on the gaskinetic modeling paradigm is established. The mesoscopic equations describe the dynamics of so-called pedestrian phase-space density, which can be considered as a two-dimensional generalization of the phase-space density used in gas-kinetic vehicular traffic flow. Convection, acceleration, and noncontinuum transition terms govern the dynamics. The latter terms reflect the dynamic influence of pedestrians decelerating and the changing angle of movement due to pedestrians interacting. Numerical solutions of the resulting gas-kinetic equations are established by using a novel particle discretization approach. Essentially, this approach upgrades the mesoscopic equations to a microscopic pedestrian flow simulation model. Using the particle discretization approach, the model’s behavior is tested for different test-case scenarios. The model is shown to produce plausible speed-density functions from which walking speeds and travel times can be derived for a variety of conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference7 articles.

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3