Synthesizing Route Travel Time Distributions from Segment Travel Time Distributions

Author:

Kumar Isukapati Isaac1,List George F.1,Williams Billy M.1,Karr Alan F.2

Affiliation:

1. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 208 Mann Hall, 2501 Stinson Drive, Campus Box 7908, Raleigh, NC 27695-7908.

2. National Institute of Statistical Sciences, 19 T. W. Alexander Drive, Research Triangle Park, NC 27709-4006.

Abstract

This paper examines a way to synthesize route travel time probability density functions (PDFs) on the basis of segment-level PDFs. Real-world data from I-5 in Sacramento, California, are employed. The first finding is that careful filtering is required to extract useful travel times from the raw data because trip times, not travel times, are observed (i.e., the movement of vehicles between locations). The second finding is that significant correlations exist between individual vehicle travel times for adjacent segments. Two analyses are done in this regard: one predicts downstream travel times on the basis of upstream travel times, and the second checks for correlations in travel times between upstream and downstream segments. The results of these analyses suggest that strong positive correlations exist. The third finding is that comonotonicity, or perfect positive dependence, can be assumed when route travel time PDFs are generated from segment PDFs. Kolmogorov–Smirnov tests show that travel times synthesized from the segment-specific data are statistically different only under highly congested conditions, and even then, the percentage differences in the distributions of the synthesized and actual travel times are small. The fourth finding, somewhat tangential, is that there is little variation in individual driver travel times under given operating conditions. This is an important finding, because such an assumption serves as the basis for all traffic simulation models.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference34 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3