Performance of Asphalt Rejuvenators in Hot-Mix Asphalt Containing Recycled Asphalt Shingles

Author:

Aguirre Max A.1,Hassan Marwa M.1,Shirzad Sharareh1,Mohammad Louay N.2,Cooper Samuel B.2

Affiliation:

1. Department of Construction Management and Industrial Engineering, College of Engineering, 214B Old Forestry Building, Baton Rouge, LA 70803 Louisiana State University

2. Louisiana Transportation Research Center, 4101 Gourrier Avenue, Baton Rouge, LA 70808 Louisiana State University

Abstract

The use of recycled asphalt shingles (RAS) in asphalt paving construction represents a sustainable approach to reduce virgin material consumption and negative environmental effects, as well as the cost of asphalt pavement. However, many challenges are yet to be addressed about the use of RAS in paving applications. This study evaluated the effect of the incorporation of postconsumer waste shingles and rejuvenators on the performance of hot-mix asphalt. Four asphalt rejuvenators—one bio-oil and three synthetic oils—were evaluated. A set of laboratory tests was conducted to characterize the performance of asphalt mixtures against permanent deformation and fatigue cracking. The addition of 5% RAS showed an improvement in permanent deformation when compared with a conventional mixture with no RAS. Yet the addition of asphalt rejuvenator products slightly decreased the performance against permanent deformation. On the basis of Hamburg wheel-tracking device test results, the addition of RAS did not adversely affect moisture resistance. Yet semicircular bending test results showed that the asphalt mixtures that contained asphalt rejuvenators had a lower critical strain energy release rate than the minimum threshold value (0.5 kJ/m2), which indicated a greater susceptibility to intermediate-temperature cracking.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3