Effects of Varying Dispersion Parameter of Poisson–Gamma Models on Estimation of Confidence Intervals of Crash Prediction Models

Author:

Geedipally Srinivas Reddy1,Lord Dominique1

Affiliation:

1. Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136.

Abstract

In estimating safety performance, the most common probabilistic structures of the popular statistical models used by transportation safety analysts for modeling motor vehicle crashes are the traditional Poisson and Poisson–gamma (or negative binomial) distributions. Because crash data often exhibit overdispersion, Poisson–gamma models are usually the preferred model. The dispersion parameter of Poisson–gamma models had been assumed to be fixed, but recent research in highway safety has shown that the parameter can potentially be dependent on the covari-ates, especially for flow-only models. Given that the dispersion parameter is a key variable for computing confidence intervals, there is reason to believe that a varying dispersion parameter could affect the computation of confidence intervals compared with confidence intervals produced from Poisson–gamma models with a fixed dispersion parameter. This study evaluates whether the varying dispersion parameter affects the computation of the confidence intervals for the gamma mean (m) and predicted response (y) on sites that have not been used for estimating the predictive model. To accomplish that objective, predictive models with fixed and varying dispersion parameters were estimated by using data collected in California at 537 three-leg rural unsignalized intersections. The study shows that models developed with a varying dispersion parameter greatly influence the confidence intervals of the gamma mean and predictive response. More specifically, models with a varying dispersion parameter usually produce smaller confidence intervals, and hence more precise estimates, than models with a fixed dispersion parameter, both for the gamma mean and for the predicted response. Therefore, it is recommended to develop models with a varying dispersion whenever possible, especially if they are used for screening purposes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference28 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Joint Confidence Region Approach to Ranking Hotspot Locations Considering Uncertainty in Expected Risk Estimates;Transportation Research Record: Journal of the Transportation Research Board;2023-06-05

2. Developing Safety Performance Functions for Commercial Motor Vehicle Crashes at Interchange Ramp Segments in Kentucky;Transportation Research Record: Journal of the Transportation Research Board;2023-03-18

3. Bayesian negative binomial regression with spatially varying dispersion: Modeling COVID-19 incidence in Georgia;Spatial Statistics;2022-12

4. Development of Crash Prediction Models for Urban Road Segments Using Poisson Inverse Gaussian Regression;International Conference on Transportation and Development 2022;2022-08-31

5. Developing Commercial Motor Vehicle Crash-Specific Safety Performance Functions at Interchange Ramp Terminals in Kentucky;Transportation Research Record: Journal of the Transportation Research Board;2022-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3