Full-Scale Testing and Performance Evaluation of Rockfall Concrete Barriers

Author:

Patnaik Anil1,Musa Abdisa1,Marchetty Srikanth1,Liang Robert1

Affiliation:

1. Department of Civil Engineering, University of Akron, Akron, OH 44325-3905.

Abstract

Rockfall hazards are present throughout the state of Ohio. The Ohio Department of Transportation (DOT) employs Test Level 3 standard concrete barriers along the edges of roadways to contain rockfalls in high-risk areas. The performance of these barriers under impact from rocks on the ditch side and their effectiveness for rockfall catchment are relatively unknown. Full-scale impact tests were performed on concrete barriers to simulate the effects of impacts from rocks of various sizes and shapes. Numerous impacts were made at different sections and levels of the barriers to test their structural integrity and energy absorption capacity. The results from this study revealed that 32-in.-high precast concrete barriers with current Ohio DOT details had an impact energy absorption capacity of up to 24 kJ under a single impact. The corresponding energy absorption capacity of 42-in.-high cast-in-place concrete barriers was about 56 kJ under a single impact. Moreover, these barriers experienced severe cracking and spalling of concrete under impact loading. Several design modifications were studied in this test program. These modifications included reducing the spacing of rebars and rebar sizes, using welded wire fabric, and using different types of fibers in the concrete. The tests conducted on the modified concrete barriers showed an impact energy increase of more than 100% with the modifications suggested in this study. Barriers made from the modified designs also experienced significantly reduced extent and severity of cracking and a reduction in spalling and splashing of concrete under impact loading.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference13 articles.

1. Geotech Bulletin GB-3: Rock Cut Slope and Catchment Design. Office of Geotechnical Engineering, Ohio Department of Transportation, Columbus, 2011.

2. New York State Department of Transportation Rock Slope Rating Procedure and Rockfall Assessment

3. Analysis of Global Stability, Anchor Spacing, and Support Cable Loads in Wire Mesh and Cable Net Slope Protection Systems

4. Corridor Management

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3