Unbound Aggregate Deformation Behavior due to Traffic Wander

Author:

Donovan Phillip R.1,Tutumluer Erol1,Huang Hai1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, Urbana, IL 61801.

Abstract

This paper reports the investigation of complex deformation trends observed in unbound aggregate layers of airport pavements and caused by traffic loading with wander, as seen in the flexible pavement sections at FAA's National Airport Pavement Test Facility. A discrete element modeling (DEM) approach was adopted to enable realistic movements (i.e., sliding, rotating, and shifting positions of individual particles in the unbound aggregate layer in response to offset wheel loads). The first DEM simulation involving a single rigid plate pushed into an assembly of generated unbound particles found that the particles moved downward and laterally from under the plate load. The lateral movement caused upward movement of particles adjacent to the plate. The DEM simulations of traffic wander involving three plates, with each plate loaded sequentially, found that the particles were forced back under the previously loaded plate due to the application of the next offset load, which caused upheaval of the first plate. Comparison of the single- and multiple-plate tests showed that wander resulted in less rutting under the middle plate over a 30-repetition test sequence due to the upheavals caused by offset loads. However, when the number of loads applied on the middle plate only (i.e., traffic coverage) was taken into account, similar rutting was observed due to both traffic wander and channelized loading. In the DEM simulations, wander caused substantially more particle rearrangement and movement, which could result in greater deformation upon further loading due to higher rutting rates and associated material degradation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference11 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3