New Approach to Determining Concrete Slab Lift-Off by Use of Interfacial Fracture Mechanics Concepts

Author:

Mirsayar M. M.1,Huang Kaijian2,Zollinger Dan G.3

Affiliation:

1. 501J CE/TTI Building, Zachry Department of Civil Engineering, College of Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136

2. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China

3. 501D CE/TTI Building, Zachry Department of Civil Engineering, College of Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136

Abstract

Negative temperature gradient and the moisture gradient through the thickness of a concrete slab result in curling and warping of the slab edges to a concave configuration. The tendency of the slab pavement to separate from the subbase layer, called lift-off, is mainly controlled by such environmental effects and the weight of the slab itself. Because of such effects, cracks may propagate at the interface of the concrete slab and the subgrade. The induced stress and displacement fields around the interface crack tip are characterized by the stress intensity factors. The stress intensity factors can then be used in assessment of the cracked bond strength by employing any fracture criteria; therefore, it is necessary that the stress intensity factors be obtained. This paper proposes a new approach for determination of slab lift-off that uses concepts from interfacial fracture mechanics. A two-dimensional finite element analysis was performed to simulate lift-off in concrete slab pavements, and the effect of interface cracking on the mechanism of the lift-off was investigated. The relative stress intensity factors as well as the relative slab lift-off were determined for different crack lengths, loading conditions, and material properties of the slab and the subgrade. The presented model was validated with experiments. This paper discusses the remarkable effects of the material properties and the induced contraction stress on the slab lift-off. The findings presented provide researchers with some insight as to the effect of curing conditions and relative stiffness on slab lift-off and answer some of the primary questions regarding the mechanism of interfacial fracture in concrete slab–subgrade structures caused by the lift-off.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3