Effect of Moisture Damage on Material Properties and Fatigue Resistance of Asphalt Mixtures

Author:

Kim Yong-Rak1,Little Dallas N.2,Lytton Robert L.3

Affiliation:

1. Department of Civil Engineering, University of Nebraska-Lincoln, 146 Walter Scott Engineering Center, Lincoln, NE 68588-0531

2. Department of Civil Engineering, Texas A&M University, 601 CE/TTI Building, College Station, TX 77843-3135

3. Department of Civil Engineering, Texas A&M University, 508G CE/TTI Building, College Station, TX 77843-3135

Abstract

Dynamic mechanical analysis (DMA) has been used successfully to evaluate complex characteristics of fatigue damage and fracture of asphalt binders and mastics by measuring fundamental viscoelastic properties and damage characteristics. DMA was used to define the effect of moisture on fatigue damage and to concentrate on the fatigue damage susceptibility of the sand and asphalt mixture mastic fraction. Dynamic frequency sweep and time sweep tests were performed on cylindrical sand-asphalt samples in a dry state and after being subjected to moisture saturation. Test results clearly indicate that moisture reduces viscoelastic stiffness, fatigue resistance, and eventually fatigue life of sand-asphalt. The mechanistic role of moisture in fatigue was analyzed and quantified by using nonlinear viscoelastic theory based on pseudovariable concepts and a continuum damage fatigue model. The effect of material surface energies, which is strongly related to fracture and damage, is further discussed by using DMA fatigue test results and varying surface energy characteristics of individual mixture constituents. The DMA experimental procedure and analysis is an efficient way to identify the influence of moisture and to compare sand-asphalt mixtures in terms of moisture susceptibility.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3