Fuel-Cycle Greenhouse Gas Emissions Impacts of Alternative Transportation Fuels and Advanced Vehicle Technologies

Author:

Wang Michael1

Affiliation:

1. Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60349

Abstract

The greenhouse gas (GHG) emissions reduction potentials of various near- and long-term transportation technologies were estimated. The estimated per-travel-distance GHG emissions results indicate that alternative transportation fuels and advanced vehicle technologies can help to significantly reduce transportation-related GHG emissions. Of the near-term technologies evaluated, electric vehicles, hybrid electric vehicles, compression-ignition, direct-injection vehicles, and E85 (85 percent ethanol and 15 percent gasoline) flexible-fuel vehicles can reduce fuelcycle GHG emissions by more than 25 percent on a fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80 percent. Other alternative fuels (such as compressed natural gas and liquefied petroleum gas) offer limited, but positive, GHG emissions reduction benefits. Among the long-term technologies evaluated, conventional sparkignition and compression-ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10 to 30 percent. Dedicated ethanol vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by more than 40 percent. Spark-ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80 percent. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing GHG emissions from the transportation sector.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3